The sine rule

What's the difference between b and B ?

The diagram above can represent any triangle. There are three angles, A, B and C. Each angle faces a side, the side being named after the angle that faces it. So the side opposite angle A is called side a.

Does the sine rule work for any triangle?

The sine rule can be used for any triangle, right-angled or not. However, there are less complicated methods for finding sides and angles in rightangled triangles, so you will find you only need to use the sine rule for nonright triangles.

What is the rule?

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \text { or equally } \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Why do I need the sine rule?

You know: two sides and an angle opposite one of the sides
You want to find: the other angle opposite one of the sides

If you feel confident with rearranging equations, you can rearrange the sine rule to find the angle B directly:

$$
B=\sin ^{-1}\left(\frac{b \sin A}{a}\right)
$$

You know: two angles and a side opposite one of the angles
You want to find: the other side opposite one of the angles

You can also rearrange the sine rule in this situation, to find side b directly:

$$
b=\frac{a \sin B}{\sin A}
$$

