Quadratic formula

What is the quadratic formula?

The quadratic formula is a formula for solving quadratic equations.
Quadratic equations can be written in the form $a x^{2}+b x+c=0$.
The quadratic formula will give you two values of x that satisfy your quadratic equation - these values of x are the solutions to your quadratic.

The quadratic formula is provided in the formula sheet at the beginning of exam papers:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

How do I use the quadratic formula?

You'll need a quadratic equation to solve, and it must be written in the form $a x^{2}+b x+c=0$. If the quadratic isn't in this form, you have to rearrange it until it is in this form.

For example, you may want to solve have the following quadratic equation:

$$
x^{2}-6 x-3=0
$$

The first thing to do is identify the values of a, b and c. By inspection, you can see that

$$
\begin{aligned}
& a=1 \\
& b=-6 \\
& c=-3
\end{aligned}
$$

Next, substitute these values into the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4 \times 1 \times(-3)}}{2 \times 1}
$$

All you have to do now is complete the calculations in the formula.
$x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4 \times 1 \times(-3)}}{2 \times 1}$
$x=\frac{6 \pm \sqrt{36-(-12)}}{2}$
$x=\frac{6 \pm \sqrt{36+12}}{2}$
$x=\frac{6 \pm \sqrt{48}}{2}$
$x=\frac{6 \pm 4 \sqrt{3}}{2}$
$x=\frac{6+4 \sqrt{3}}{2} \quad$ or $\quad x=\frac{6-4 \sqrt{3}}{2}$
$x=3+2 \sqrt{3} \quad$ or $\quad x=3-2 \sqrt{3}$
$x=6.46 \quad$ or $\quad x=-0.46$

Problems you may encounter

The quadratic formula is very powerful, but it has its disadvantages.

Using quadratic formula is hard work

The main problem is it takes quite a long time and quite a few steps to produce a solution. If you can solve a quadratic equation by factorising or completing square, it's probably quicker and easier to do so.

Some quadratic equations cannot be solved

Some quadratic equations have values of a, b and c such that $b^{2}-4 a c$ is negative. It is impossible to find the square root of a negative number, so if you try to calculate $\sqrt{b^{2}-4 a c}$ when $b^{2}-4 a c<0$, your calculator will return an error message of some kind, perhaps Math Error or similar.

The reason you can't find a solution to certain quadratics is because they don't all have solutions!

