Dimensional analysis

What the devil is dimensional analysis?

Dimensional analysis is elementary, my dear Watson. It's a method for determining whether an expression represents a length, an area, a volume or something else.

Eh? Show me an example

It's probably easiest to understand dimensions and how to analyse them by going through an exam question.

QuestionIn each of the following expressions, x, y , and z represent lengths.State whether each expression represents length, area, volume or none of these.				
(a) <i>x</i>	+ <i>y</i>	(b) <i>xy</i>	(c) $\frac{xy}{z}$	(d) $\frac{x}{y+z}$

Part (a) is x + y. Since x and y are lengths, x + y is a (length + length), which is a length. When you add or subtract two quantities with the same dimensions, the resulting quantity (the answer) always has the same dimensions, too.

Part (b) is *xy*. Since *x* and *y* are lengths, *xy* is a (length × length), which is an area. When you multiply two quantities, their dimensions are multiplied too.

Part (c) is $\frac{xy}{z}$. Since *x*, *y* and *z* are lengths, $\frac{xy}{z}$ is a $\frac{\text{length} \times \text{length}}{\text{length}}$, which cancels down to a length. When you divide a quantity by another, the dimensions of the answer are the dimensions of the first quantity divided by the dimensions of the second quantity

Part (d) is
$$\frac{x}{y+z}$$
. Since *x*, *y* and *z* are lengths, $\frac{x}{y+z}$ is a $\frac{\text{length}}{\text{length} + \text{length}}$.
Because a (length + length) is a length, $\frac{\text{length}}{\text{length} + \text{length}}$ is a $\frac{\text{length}}{\text{length}}$.

The lengths in $\frac{\text{length}}{\text{length}}$ cancel each other out, leaving 1, or in other words, no dimensions. So the expression in part (d) is **dimensionless**.

What's the difference between dimensions and units?

A particular dimension can be expressed in many different units.

For instance, length is a dimension and it can be expressed in many, many units: millimetres, centimetres, metres, kilometres, inches, feet, yards, miles, furlongs, nautical miles, cubits, light years, parsecs, ångströms and so on.

One dimension can be expressed in many different units but a particular unit always expresses a particular dimension. Centimetres, for example, always express length, whereas kilograms always express mass.

Are all dimensions just lengths multiplied together?

There are three basic kinds of dimension in GCSE maths: length, time, and mass. We can use a shorthand notation to save writing out the phrase "dimensions of length" or similar. For length, write [L]. For time, write [T]. For mass, write [M].

All the quantities you will come across in maths have dimensions that are simple combinations of these base dimensions. For instance, average speed = distance travelled ÷ time taken, so its dimensions are [L] ÷ [T], because distance is a length, [L], and time taken is a time, [L].

Type of quantity	Dimensions (long form)	Dimensions (short form)
Length	$\left[L \right]$	$\begin{bmatrix} L \end{bmatrix}$
Area	$\begin{bmatrix} L \end{bmatrix} \times \begin{bmatrix} L \end{bmatrix}$	$\begin{bmatrix} L \end{bmatrix}^2$
Volume	$\begin{bmatrix} L \end{bmatrix} \times \begin{bmatrix} L \end{bmatrix} \times \begin{bmatrix} L \end{bmatrix}$	$\begin{bmatrix} L \end{bmatrix}^3$
Time	$\begin{bmatrix} T \end{bmatrix}$	$\begin{bmatrix} T \end{bmatrix}$
Speed	$\begin{bmatrix} L \end{bmatrix} \div \begin{bmatrix} T \end{bmatrix}$	$\begin{bmatrix} L \end{bmatrix} \begin{bmatrix} T \end{bmatrix}^{-1}$
Mass	$\left[M \right]$	$\left[M \right]$
Density	$ \begin{bmatrix} M \end{bmatrix} \\ \begin{bmatrix} L \end{bmatrix} \times \begin{bmatrix} L \end{bmatrix} \times \begin{bmatrix} L \end{bmatrix} $	$\left[M\right]\left[L\right]^{-3}$

One, two, three and more dimensions

We say that all quantities that have dimensions of length, [L], are **one-dimensional** or **1D**. Likewise, all quantities that have dimensions of of $[L]^2$ are **two-dimensional** or **2D** and those with dimensions of $[L]^3$ are **three-dimensional** or **3D**.

Dimensions of circumference

$c = \pi d$

circumference = $pi \times diameter$

Diameter is clearly a length – it is a straight line. So what about circumference? We'll use dimensional analysis to work it out.

Both sides of the equation must have equal dimensions. Pi has no dimensions – we say it is dimensionless – so multiplying diameter by pi does not change its dimensions, it is still a length. The right hand side of the equation has dimensions of length, [L]. Therefore the left hand side (circumference) must also have dimensions of length.

Dimensions of area

$$A_{\text{circle}} = \pi r^2$$

area of circle = pi×(radius squared)

Radius is a length, [L], so radius squared is a length squared, $[L]^2$. Pi is dimensionless, so πr^2 also has dimensions of length squared, $[L]^2$. This means that A, the area of a circle, must also have dimensions of $[L]^2$. In fact, any area must have dimensions of $[L]^2$.

Dimensions of volume

$$V_{\rm cylinder} = \pi r^2 h$$

volume of cylinder = $pi \times (radius squared) \times height$

In the example above, we established that πr^2 has dimensions of length squared, $[L]^2$. The height of a cylinder, *h*, is a straight line and so has dimensions of length, [L]. The right hand side of the equation is $\pi r^2 h$ and has dimensions of $[L]^2 \times [L]$, that is $[L]^3$, so the left hand side, volume, must also have dimensions of $[L]^3$.

Dimensions of speed

$$s = \frac{d}{t}$$

average speed = distance travelled ÷ time taken

Speed is the left hand side (LHS) of the equation above, and the dimensions of the LHS are always equal to the dimensions of the RHS, which are $[L] \div [T]$, also written as $[L][T]^{-1}$. In other words, speed has dimensions of length \div time.

Dimensions of density

$$\rho = \frac{m}{V}$$

density of object = mass of object ÷ volume of object

Mass has dimensions of [M] and volume has dimensions of $[L]^3$ so density had dimensions of $[M] \div [L]^3$, which is often also written as $[M][L]^{-3}$. The symbol for density is ρ , the Greek letter rho.