- 1. (cont.)
 - (c) Answer *all* parts (i) to (iii).

A particle confined to a one-dimensional box of length L has the following wavefunction:

$$\Psi(x) = \psi_2(x) + 2\psi_3(x),$$

where $\psi_2(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi}{L}x\right)$ and $\psi_3(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{3\pi}{L}x\right)$ are normalised eigenfunctions of the Hamiltonian for a particle in a one-dimensional box corresponding to eigenvalues: $\frac{4h^2}{8mL^2}$ and $\frac{9h^2}{8mL^2}$ respectively.

(i) Normalise $\Psi(x)$.

(4 marks)

(ii) Work out the result of operating with the Hamiltonian operator on the wavefunction, *i.e.* $\hat{H}\Psi(x)$.

(3 marks)

(iii) Evaluate the expectation value of the energy for the given wavefunction.

(5 marks)