Theoretical 2007
1 (c) (iii)
The question wants the expectation value of the energy of $\Psi(x)$.

The Schrödinger equation is needed here: $\hat{H} \Psi(x)=E \Psi(x)$.

We calculated $\hat{H} \Psi(x)$ in part (ii):

$$
\begin{aligned}
\hat{H} \Psi(x) & =E_{2} \psi_{2}(x)+2 E_{3} \psi_{3}(x) \\
& =\frac{4 h^{2}}{8 m L^{2}} \psi_{2}(x)+2 \frac{9 h^{2}}{8 m L^{2}} \psi_{3}(x) .
\end{aligned}
$$

So $E \Psi(x)=E_{2} \psi_{2}(x)+2 E_{3} \psi_{3}(x)$.
Therefore $E=\frac{E_{2} \psi_{2}(x)+2 E_{3} \psi_{3}(x)}{\Psi(x)}$,
$=\frac{E_{2} \psi_{2}(x)+2 E_{3} \psi_{3}(x)}{\psi_{2}(x)+2 \psi_{3}(x)}$
$=\frac{h^{2}}{8 m L^{2}}\left(\frac{4 \psi_{2}(x)+18 \psi_{3}(x)}{\psi_{2}(x)+2 \psi_{3}(x)}\right)$
I can't simplify this any further as it is, so I'll substitute in the expressions for $\psi_{2}(x)$ and $\psi_{3}(x)$.
$\psi_{2}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi}{L} x\right)$ and $\psi_{3}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{3 \pi}{L} x\right)$
$E=\frac{h^{2}}{8 m L^{2}}\left(\frac{4 \sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi}{L} x\right)+18 \sqrt{\frac{2}{L}} \sin \left(\frac{3 \pi}{L} x\right)}{\sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi}{L} x\right)+2 \sqrt{\frac{2}{L}} \sin \left(\frac{3 \pi}{L} x\right)}\right)$
$E=\frac{h^{2}}{8 m L^{2}} \sqrt{\frac{2}{L}}\left(\frac{4 \sin \left(\frac{2 \pi}{L} x\right)+18 \sin \left(\frac{3 \pi}{L} x\right)}{\sin \left(\frac{2 \pi}{L} x\right)+2 \sin \left(\frac{3 \pi}{L} x\right)}\right)$

Therefore we resort to calculating the expectation value of the energy of $\Psi(x)$ - the question even asks for it!

The expectation value $\langle\hat{\Omega}\rangle$ of an operator $\hat{\Omega}$ is defined in Atkins (p. 316 of the 7 th edn.) as $\langle\hat{\Omega}\rangle=\int \psi^{*} \hat{\Omega} \psi \mathrm{~d} \tau$.

Dr Manby defines it (implicitly) as $\langle\hat{\Omega}\rangle=\int \psi \hat{\Omega} \psi \mathrm{d} \tau-\mathrm{I}$ assume this is because we are always considering real wavefunctions and so $\psi^{*}=\psi$. In fact, his lecture notes give a formula for the expectation value of the energy of an approximate particle-in-a-box wavefunction, $\tilde{\psi}(x)$.

$$
\tilde{E}=\int_{0}^{L}|\tilde{\psi}(x)|^{2} \frac{\hat{H} \tilde{\psi}(x)}{\tilde{\psi}(x)} \mathrm{d} x=\int_{0}^{L} \tilde{\psi}(x) \hat{H} \tilde{\psi}(x) \mathrm{d} x
$$

In this question, the equation becomes

$$
\begin{aligned}
\tilde{E} & =\int_{0}^{L} \Psi(x) \hat{H} \Psi(x) \mathrm{d} x \\
& =\int_{0}^{L}\left\{\psi_{2}(x)+2 \psi_{3}(x)\right\}\left\{E_{2} \psi_{2}(x)+2 E_{3} \psi_{3}(x)\right\} \mathrm{d} x \\
& =\int_{0}^{L} E_{2} \psi_{2}^{2}+2\left(E_{2}+E_{3}\right) \psi_{2} \psi_{3}+4 E_{3} \psi_{3}^{2} \mathrm{~d} x \\
& =E_{2} \int_{0}^{L} \psi_{2}^{2} \mathrm{~d} x+2\left(E_{2}+E_{3}\right) \int_{0}^{L} \psi_{2} \psi_{3} \mathrm{~d} x+4 E_{3} \int_{0}^{L} \psi_{3}^{2} \mathrm{~d} x \\
& =E_{2} \int_{0}^{L} \psi_{2}^{2} \mathrm{~d} x+2\left(E_{2}+E_{3}\right) \int_{0}^{L} \psi_{2} \psi_{3} \mathrm{~d} x+4 E_{3} \int_{0}^{L} \psi_{3}^{2} \mathrm{~d} x
\end{aligned}
$$

As we realised in part (i)

- $\psi_{2}(x)$ and $\psi_{3}(x)$ are already normalised, so $\int_{0}^{L} \psi_{2}^{2}(x) \mathrm{d} x=1$ and

$$
\int_{0}^{L} \psi_{3}^{2}(x) \mathrm{d} x=1
$$

- $\quad \psi_{2}(x)$ and $\psi_{3}(x)$ are different states and thus orthogonal:

$$
\int_{0}^{L} \psi_{2}(x) \psi_{3}(x) \mathrm{d} x=0
$$

This allows us to simplify our expression to
$\tilde{E}=E_{2}\{1\}+2\left(E_{2}+E_{3}\right)\{0\}+4 E_{3}\{1\}=E_{2}+4 E_{3}$

Substituting in values for E_{2} and E_{3} gives a value for \tilde{E} :
$E_{2}=\frac{4 h^{2}}{8 m L^{2}}$ and $E_{3}=\frac{9 h^{2}}{8 m L^{2}}$ and $\tilde{E}=E_{2}+4 E_{3}$
So $\tilde{E}=\frac{4 h^{2}}{8 m L^{2}}{ }_{2}+4 \frac{9 h^{2}}{8 m L^{2}}$
$=(4+4 \times 9) \frac{h^{2}}{8 m L^{2}}$
$=40 \frac{h^{2}}{8 m L^{2}}$
$=\frac{5 h^{2}}{m L^{2}}$

