
Theoretical 2007 
1 (c) (iii) 
 
The question wants the expectation value of the energy of   !(x) . 
 
The Schrödinger equation is needed here:   Ĥ!(x) = E!(x) . 
 
We calculated   Ĥ!(x)  in part (ii):  
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I can't simplify this any further as it is, so I'll substitute in the expressions for 
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Therefore we resort to calculating the expectation value of the energy of   !(x)  – the 
question even asks for it! 
 
The expectation value 

 
!̂  of an operator  !̂  is defined in Atkins (p. 316 of the 7th 

edn.) as 
 
!̂ = " #!̂$ "  d% . 

 
Dr Manby defines it (implicitly) as 

 
!̂ = "!̂# "  d$  – I assume this is because we are 

always considering real wavefunctions and so ! "
=! . In fact, his lecture notes give 

a formula for the expectation value of the energy of an approximate particle-in-a-box 
wavefunction, 
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2 Ĥ !! (x)

!! (x)0

L

"  dx = !! (x)Ĥ !! (x)
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In this question, the equation becomes 
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As we realised in part (i) 
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This allows us to simplify our expression to 
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Substituting in values for 
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