Theoretical 2007

1 (c) (ii)

What the question is about

The question states that $\psi_{2}(x)$ and $\psi_{3}(x)$ are eigenfunctions of the Hamiltonian operator, and the corresponding eigenvalues are $\frac{4 h^{2}}{8 m L^{2}}$ and $\frac{9 h^{2}}{8 m L^{2}}$.

This means that:
$\hat{H} \psi_{2}(x)=E_{2} \psi_{2}(x)$, where $E_{2}=\frac{4 h^{2}}{8 m L^{2}}$
and
$\hat{H} \psi_{3}(x)=E_{3} \psi_{3}(x)$, where $E_{3}=\frac{9 h^{2}}{8 m L^{2}}$.

The question wants you to apply the Hamiltonian operator to $\Psi(x)$. Here's what happens:

$$
\begin{aligned}
& \hat{H} \Psi(x)=\hat{H}\left(\psi_{2}(x)+2 \psi_{3}(x)\right) \\
& =\hat{H} \psi_{2}(x)+2 \hat{H} \psi_{3}(x) \\
& =E_{2} \psi_{2}(x)+2 E_{3} \psi_{3}(x) \\
& =\frac{4 h^{2}}{8 m L^{2}} \psi_{2}(x)+2 \frac{9 h^{2}}{8 m L^{2}} \psi_{3}(x) \\
& =\frac{4 h^{2}}{8 m L^{2}} \psi_{2}(x)+\frac{18 h^{2}}{8 m L^{2}} \psi_{3}(x) \\
& =\frac{h^{2}}{8 m L^{2}}\left(4 \psi_{2}(x)+18 \psi_{3}(x)\right) \\
& =\frac{2 h^{2}}{8 m L^{2}}\left(2 \psi_{2}(x)+9 \psi_{3}(x)\right)
\end{aligned}
$$

